Abstract: Against the backdrop of energy structure transition driven by the dual carbon goals and the large-scale grid integration of new energy sources, the flexible peak regulation capability of 350 MW combined heat and power (CHP) units is crucial for power system stability due to their efficient energy utilization and stable output characteristics. This paper elaborates on the importance of CHP units in improving energy efficiency, facilitating energy conservation and emission reduction, and ensuring electricity and heat supply, analyzes the necessity of flexible peak regulation for power system stability, and points out that they can maintain power balance through multi-dimensional regulation. It sorts out the current status of flexible peak regulation technologies for 350 MW units, including the innovation and application of technologies such as circulating fluidized bed composite combustion, combustion optimization adjustment, and wide-load operation design. The paper further deeply analyzes the technical challenges such as equipment safety, heat-power decoupling, low-load efficiency and emissions, as well as issues like the balance between renovation costs and benefits, the impact of electricity market pricing mechanisms, and policy management. It prospects the development trends, emphasizing the importance of the integration of intelligence and automation, the research and development of new peak regulation technologies, the collaborative integration of multiple technologies, and the coordinated development with new energy, providing a reference for improving unit peak regulation capabilities and promoting the green transition of energy.
Key words: dual carbon; combined heat and power; flexible peak regulation; power system stability; coordinated development of new energy
參考文獻(xiàn)
[1] 沙雨桐,劉培,李政. 考慮熱網(wǎng)動(dòng)態(tài)特性的熱電聯(lián)產(chǎn)機(jī)組運(yùn)行優(yōu)化[J] . 動(dòng)力工程學(xué)報(bào),2025,45(12) :2141-2150.
[2] 張國(guó)柱,張鈞泰,馬國(guó)鋒,等. 基于吸收式熱泵解耦的燃煤熱電聯(lián)產(chǎn)機(jī)組輔助新能源消納深度調(diào)峰特性研究[J]. 動(dòng)力工程學(xué)報(bào),2025,45(11) :1955-1965.
[3] 孔德安,王瑋,林威,等. 基于廣義預(yù)測(cè)控制的熱電聯(lián)產(chǎn)機(jī)組變工況切換控制策略[J] . 熱能動(dòng)力工程,2025,40(9) :96-106.
[4] 張攀,林顯超,劉巖,等. 新型熱電聯(lián)產(chǎn)經(jīng)濟(jì)性評(píng)價(jià)模型與應(yīng)用分析[J] . 汽輪機(jī)技術(shù),2025,67(4) :311-316.
[5] 陳佳明,許珈瑋,田秀君. 熱電聯(lián)產(chǎn)機(jī)組碳排放關(guān)聯(lián)影響因素及經(jīng)濟(jì)性分析[J] . 化工進(jìn)展,2025,44(S1) :92-101.
[6] 周天羽,張一農(nóng),徐鋼,等. 考慮調(diào)峰輔助服務(wù)收益的耦合儲(chǔ)熱罐熱電聯(lián)產(chǎn)機(jī)組運(yùn)行調(diào)度研究[J]. 熱力發(fā)電,2025,54(5) :92-101.
[7] 孫健,吳寶鋼,王國(guó)順,等. 熱電聯(lián)產(chǎn)機(jī)組靈活性提升方法研究綜述[J] . 動(dòng)力工程學(xué)報(bào),2025,45(4) :626-634.
[8] 邱志勇,莫愿斌. 基于改進(jìn)雪雁算法的熱電聯(lián)產(chǎn)系統(tǒng)經(jīng)濟(jì)調(diào)度優(yōu)化[J] . 現(xiàn)代電子技術(shù),2025,48(6) :127-135.
[9] 王瑋,王子欣,孔德安,等. 靈活性驅(qū)動(dòng)下的熱電聯(lián)產(chǎn)機(jī)組多目標(biāo)協(xié)同控制策略[J] . 動(dòng)力工程學(xué)報(bào),2024,44(12) :1907-1915.
[10] 陳思,楊宏欣,王翀,等. 源荷置信度水平下光伏光熱耦合熱電聯(lián)產(chǎn)系統(tǒng)的調(diào)度優(yōu)化[J] . 太陽能學(xué)報(bào),2024,45(11) :352-359.
[11] 熊涌盛,劉明,嚴(yán)俊杰. 供工業(yè)蒸汽熱電聯(lián)產(chǎn)機(jī)組滑參數(shù)運(yùn)行的靈活性與經(jīng)濟(jì)性分析[J] . 工程熱物理學(xué)報(bào),2024,45(11) :3262-3268.
[12] 王唯鏵,高明明,王勇權(quán),等.350 MW 熱電聯(lián)產(chǎn)循環(huán)流化床機(jī)組負(fù)荷響應(yīng)特性[J] . 潔凈煤技術(shù),2024,30(9) :102-110.
[13] 高新勇,鄭立軍,喻珮,等. 熱電聯(lián)產(chǎn)電站復(fù)雜供熱系統(tǒng)的熱電負(fù)荷智能分配研究[J] . 熱能動(dòng)力工程,2024,39(8) :86-93.
[14] 劉含笑,單思珂,方建,等. 熱電聯(lián)產(chǎn)的產(chǎn)品碳足跡量化與評(píng)價(jià)[J] . 化工進(jìn)展,2025,44(7) :4233-4240.
[15] 王欣,崔承剛,王想想,等. 基于安全強(qiáng)化學(xué)習(xí)的熱電聯(lián)產(chǎn)機(jī)組經(jīng)濟(jì)調(diào)度策略研究[J] . 系統(tǒng)仿真學(xué)報(bào),2025,37(4) :968-981.
[16] 王秋杰,亓浩,譚洪,等. 考慮碳市場(chǎng)風(fēng)險(xiǎn)的熱電聯(lián)產(chǎn)虛擬電廠低碳調(diào)度[J] . 電力自動(dòng)化設(shè)備,2024,44(10) :8-15.